数据库问题 笛卡尔积怎么计算
的有关信息介绍如下:按照行来计算,可以把每行的3列看做一个整体(看成1列)。
设A,B为集合,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合叫做A与B的笛卡尔积,记作AxB。
笛卡尔积的符号化为:
A×B={(x,y)|x∈A∧y∈B}
A1 A2 A3 A1 A2 A3
a b c a b c
a b c b a c
a b c c a b
b a c a b c
b a c b a c
b a c c a b
c a b a b c
c a b b a c
c a b c a b
一、运算性质:
1、对任意集合A,根据定义有
AxΦ =Φ , Φ xA=Φ
2、笛卡尔积运算不满足交换律,即
AxB≠BxA(当A≠Φ ∧B≠Φ∧A≠B时)
3、笛卡尔积运算对并和交运算满足分配律,即
Ax(B∪C)=(AxB)∪(AxC)
(B∪C)xA=(BxA)∪(CxA)
Ax(B∩C)=(AxB)∩(AxC)
(B∩C)xA=(BxA)∩(CxA)
二、应用场合:
在某些情况下用于寻找连续日期中残缺的数据,可以先用笛卡尔积做一个排列组合,然后和目标酱英久表进行关联,以查询少了哪些数据。
例如:在一张考勤记录表中,记录了100个人在2018年8月的考勤信息,理论上这些人应该每天都有记录。但是实际上有的人在某些天上面的数据缺少了,然而不论是一天一天的查询,还是一个一个人的查询,都比较麻烦。
在这种情况下,可以驾痕针对每个人每一天做一个笛卡尔积处理。去除与实际表的肥板关联,就很容易找出确实数据了。