您的位置首页生活百科

如何计算协方差

如何计算协方差

的有关信息介绍如下:

如何计算协方差

协方差是统计学中使用的一种数值,用于描述两个变量间的线性关系。两个变量的协方差越大,它们在一系列数据点范围内的取值所呈现出的趋势就越相近(换句话说,两个变量的曲线距离彼此较近)。一般来说,两组数值x和y的协方差可以用这个公式计算:1/(n -1)Σ(xi- xavg)(yi- yavg)。其中n为样本量,xi是每个x点的取值,xavg为x的平均值,yi和yavg也类似。

把你的数据整理成一系列(x,y)取值点。你只需要两个变量x和y的一系列取值就可以计算出方差。如果你使用的是一个图上的数据点,你的数据应该来自图上的一系列(x,y)交点。或者,则需要通过数学方法找出两个变量的一一对应值。

记下相对应的x/y数据对的数量。这就是“n”,即样本大小,计算方差时需要用到。

举个例子,假设我们开了一家熟食店,需要确定所发出的优惠券是否会对销量产生影响。我们可以将x定义为“在优惠日发放出去的优惠券数量”,将y定义为“当日销量”。

为了方便起见,我们使用上图中的表格作为参考,即,第一天我们发放出x=1优惠券,卖出y=8,第二天发放x=3优惠券,卖出y=6,等等。

计算x的平均值。在得到一系列x/y取值之后,剩下的工作就不多了。首先计算x的平均值,将所有的x值相加再除以样本量(进一步参考我们关于计算平均值的文章)。

在我们的例子中,我们需要将上表中“x”栏中的数值相加,再除以数值的个数。计算1+3+2+5…,最终得到44。再除以9,得到44/9 =4.89就是x的平均值。见下:

协方差值等于1意味着完全正相关。协方差值永远介于1和-1之间。在这个范围外的值说明计算出错了。根据协方差值接近1或-1的程度得出结论。例如,如果协方差值正好等于1,则两个变量完全正相关。也就是说,一个变量会随着另一个变量的增加而增加(减少而减少)。这种关系是完全线性的——无论变量取值多大或多小,两个变量之间的关系都一样。

协方差值等于-1意味着完全负相关。另一方面,如果协方差值为-1,则两个变量完全负相关。换句话说,一个变量的增加会导致另一个变量减小,反之亦然。跟上文一样,这个关系也是线性的。两个变量分离的比率不随时间变化。

举个例子,假设我们正在管理一个油井,总共能钻出一万桶油。x等于已经钻出的桶数,y等于还在油井里的桶数,那么只要x增加,y就减小。换句话说,已经钻出来的油绝对不可能回到井内。见下:

要知道协方差为0意味着不相关。如果协方差为0,说明两个变量不相关。换句话说,我们不会预测一个变量增加或减少将导致另一个变量的增加或减少。两个变量间没有线性关系,但仍然可能存在非线性关系。

举个例子,假设一个人正在接受针对一种病毒性疾病的顺势疗法。如果x表示用药剂量(以茶匙计),y表示病人血管中的病毒载量(以每毫升国际单位(IU/mL)计),我们没法预测y会随着x的增加而增加或减少。y的波动与x完全独立。见下

要知道介于-1和1之间的值意味着不完全相关。大部分协方差值都不会严格等于1,-1或0,通常会介于它们之间。根据一个协方差值接近某一个基准值的程度,可以判断其是正相关还是负相关。

例如,协方差值0.8意味着高度正相关,尽管不是完全相关。也就是说,如果x增加,y通常会增加,x减小,y通常会减小,尽管这个关系不是完全稳定的。