如何设计正交试验
的有关信息介绍如下:正交试验又叫正交试验设计(Orthogonal experimental design),是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
基本简介:
当分析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs)。
正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。
正交表:
正交表是一整套规则的设计表格。用L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,称它为混合型正交表,如L8(4×24) ,此表的5列中,有1列为4水平,4列为2水平。根据正交表的数据结构看出,正交表是一个t行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次。
正交表具有两条性质:
(1)每一列中各数字出现的次数都一样多。
(2)任何两列所构成的各有序数对出现的次数都一样多。
所以称之谓正交表。
方案设计:
安排试验时,只要把所考察的每一个因子任意地对应于正交表的一列(一个因子对应一列,不能让两个因子对应同一列),然后把每列的数字"翻译"成所对应因子的水平。这样,每一行的各水平组合就构成了一个试验条件(不考虑没安排因子的列)。
例:
某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、气体流速(C)、还原气体比例(D)这四个因子对全铁合量X〔越高越好)、金属化率Y(越高越好)、二氧化钛含量Z(越低越好)这三项指标的影响。希望通过试验找出主要影响因素,确定最适工艺条件。
首先根据专业知以确定各因子的水平:
时间:A1=3(小时),A2=4(小时),A3=5(小时)
温度:B1=1000(℃),B2=1100(℃),B3=1200(℃)
流速:Cl=600(毫升/分),
C2=400(毫升/分),
C3=800(毫升/分)
CO:H2:D1=1:2,D2=2:1,D3=1:1
这是四因子3水平的多指标(X、Y、Z)问题,如果做全面试验需3^4=81次试验,而用L9( 34)来做只要9次。具体安排如表3。
数据分析—方差分析:
正交表的另一个好处是简化了试验数据的计算分折。还是以[例1]为例来说明。按照表2的试验方案进行试验,测得9个转化率数据。
由总平方和与各因素平方和即可求得误差平方和,亦称剩余平方和。是总平方和减各因素平方和所得。如正交表有一空列,则该列的平方和就是误差平方和。但在正交表饱和试验的情况下,即所有各列全部排满时,误差平方和一般用各因素平方和中几个最小的平方和之和来代替,同时,这几个因素不再作进一步的分析。
自由度:φT=试验次数一1
φA,B…=水平数一1
φA×B=φA×φB
φe=φT-φA-φB-……-φD