判断微分方程是否线性
的有关信息介绍如下:大致有三个条件:
①未知函数及其各阶导数都是一次幂。
②未知函数及各阶导数的系数只能含有自变量或常数 这在后面一阶线性微分方程中也涉及到了。dy/dx=-p(x)y十Q(x),其中p(x)就是未知函数含自变量的系数。
③不能出现未知函数及各阶导数的复合函数形式。如sinxdx=cosydy,出现了cosy,为复合函数,所以不是线性微分方程。
微分方程是数学方程,用来描述某一类函数与其导数之间的关系,在初等数学的代数方程里,其解是常数值。
微分方程可分为常微分方程及偏微分方程。它在化学、工程学、经济学和人口统计等领域应用广泛。
线性及非线性:
常微分方程及偏微分方程都可以分为线性及非线性二类。
若微分方程中没有出现自变数及微分项的平方或其他乘积项,也没有出现应变数及其微分项的乘积,此微分方程为线性微分方程,否则即为非线性微分方程。
齐次线性微分方程是线性微分方程中更细的分类,微分方程的解乘上一系数或是与另一个解相加后的结果仍为微分方程的解。
若线性微分方程的系数均为常数,则为常系数线性微分方程。常系数线性微分方程可以利用拉氏转换转换为代数方程,因此简化求解的过程。
针对非线性的微分方程,只有相当少数的方法可以求得微分方程的解析解,而且这些方法需要微分方程有特别的对称性。长时间时非线性微分方程可能会出现非常复杂的特性,也可能会有混沌现象。