求数列极限的方法总结
的有关信息介绍如下:求数列极限的方法总结
求数列极限可以归纳为以下三种形式: ★抽象数列求极限 这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。
★求n项和或n项积数列的极限,主要有以下几种方法: a.利用特殊级数求和法 如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。 b.利用幂级数求和法 若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。 c.利用定积分定义求极限 若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。 d.利用夹逼定理求极限 若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。 e.求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。