如何打败阿尔法狗
的有关信息介绍如下:AlphaGo人工智能,阿尔法狗是如何一步步打败世界为其大师的
轰动一时引发全世界关注,基于谷歌深厚的人工智能研发资源,通过对无数局围棋对弈分析,自主学习围棋套路,战胜人类围棋大师展现人工智能尖端的学习能力。
阿尔法围棋(AlphaGo)是一款围棋人工智能程序,由谷歌(Google)旗下DeepMind公司的戴维·西尔弗、艾佳·黄和戴密斯·哈萨比斯与他们的团队开发,这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。2015年10月阿尔法围棋以5:0完胜欧洲围棋冠军、职业二段选手樊麾;2016年3月对战世界围棋冠军、职业九段选手李世石,并以4:1的总比分获胜。
阿尔法围棋(AlphaGo)的主要工作原理是“深度学习”。“深度学习”是指多层的人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。
阿尔法围棋(AlphaGo)是通过两个不同神经网络“大脑”合作来改进下棋。这些大脑是多层神经网络跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13 个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。
这些网络通过反复训练来检查结果,再去校对调整参数,去让下次执行更好。这个处理器有大量的随机性元素,所以人们是不可能精确知道网络是如何“思考”的,但更多的训练后能让它进化到更好。
关心AI圈的人一定都知道,谷歌是一家在AI领域投入和应用非常广泛和庞大的科技公司,对于AI的研究也一直处于世界水平的前列。AlphaGo的备受瞩目凸显了Google收购DeepMind的精明——不仅用围棋机器人在全球范围内为Google在人工智能、深度学习等领域的技术领先性做了一把免费广告,还利用DeepMind创造的模拟神经元网络系统将自家数据中心用于制冷的能耗降低了 40%、PUE降低了15%。